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! iThe influence of specimen thickness and width on the elongation in 
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The results conform approximately to Templin's equation, El • CAn • 
The constant n, a measure of the variation of elongation in 2 in. with 
specimen area, is shown to be related to the log of the ratio of the zero 
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elongations. irA method is shown for predicting the elongation in 2 inMor 
a bar of any thickness (or width) from measurements on another bar of the 
same material. The reason for specimen area being of greater importance 
than absolute values of width or thickness in controlling elongation is 
demonstrated by studying the strain distribution near the fractur~' 

The methods outlined in this report will enable specification and 
inspection personnel to determine how elongation values will vary with 
sheet thickness. 
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INTRODUCTION 

The current interest in sheet material has emphasized the need for a 
more accurate understanding of the significance of ductility of materials. 
This is especially true of elongation, which is the most common, and fre­
quently the only means used for assessing ductility of sheet materials. 
Unfortunately, elongation values depend on such geometrical factors as 
specimen thickness and width in addition to gage length and the inherent 
ductility of the material itself. As a convenience, a constant gage length 
and specimen width are used as the ASTM standard sheet tensile specimenl , 
but this.means that the elongation of specimens of different thicknesses are· 
not strictly comparable. If an inter-relationship between elongation, gage 
length, sp~cimen width, and specimen thickness could be determined, either 
analytically or empirically, it would be possible to correlate ductility 
for materials of widely different sizes and shapes. 

~-----
The goal of this investigation was to develop an understanding of how 

the specimen geometry affects elongation. It was recognized that the elon­
gation of a tensile specimen can be roughly divided into a uniform strain 
and a localized strain associated with the neck. Since the extent of the 
necked region varies with the specimen area, its contribution to the total 
elongation of a fixed gage length will also vary with specimen area. By 
applying a grid to the surface of the specimens, the elongation associated 
with the uniform strain and localized strain can be determined for various 
specimen geometries. Reported herein are some results on how specimen and 
thickness affect the elongation in a fixed gage length. The influence of 
reduced section length. (shoulder restraints or stored elastic energy) have 
been neglected. ' 

.... ~-. p -- -
LITERATURE REVIEW 

There has been considerable interest in the past in the effects of 
specimen geometry on tensile properties and especially on elongation. The 
older European literature has been reviewed in Handbuch der Werkstoff­
prufung2, whereas much of the American literature was reviewed in a recent 
DMIC report3. 

Quantitative relations between elongation and gage length and/or cross­
section geometry generally take two forms: 

a. variation of elongation with gage length for specimens of a given 
cross-section, and 

b. variation of elongation with specimen area in specimens with dif­
fering cross-section size and/or geometry but with the same gage length. 

Equations relating elongation and gage length have been important be­
cause of the great number of gage lengths in common use and the desirability 
of comparing elongation values. Throughout the world, the gage lengths used 
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for determining elongation vary from 3.54 to 10 times the specimen diameter 
for round specimens (Reference 2), and from 4 to 11.3 times the square root 
of the area for flat specimens. Even within one country, two or more gage 
lengths may be used. 

These equations generally recognize that the elongation is a maximum 
for a zero gage length. The zero gage length elongation can be calculated 
from the true fracture strain or reduction of area. From this maximum value 
the elongation decreases as the gage length increases, and approaches a 
limiting value as the gage length approaches infinity. If creep or shoulder 
restraints could be avoided, this would be the strain at onset of necking, 
or the maximum uniform strain. 

The dependence of elongation on specimen cross-section area has been 
recognized. This can be seen by the designation of gage length as some 
multiple of specimen diameter for round specimens. Even for rectangular 
specimens, gage lengths have been specified as a multiple of the square root 
of the area. Since the elongation depends on the area and not the dimen­
sions, the cross-section shape is relatively unimportant. Templin reported 
similar elongation values for variously shaped specimens, including tubular4, 
of the same area. Some of the equations relating elongation in a fixed gage 
length and specimen cross-section area are: 

Bauschinger5 

Bertella6 

Templin4 

where 

E1 = percent elongation 

E1 '" E1u +..9. ~ 
L 

E1 

• • . • (1) 

· • . . (2) 

• . • • (3) 

E1u = percent elongation measured on an infinitely long gage length 

A = original area 

L '" gage length 

C, Q, m, n '" constants 

All three equations show that the elongation increases with some ex­
ponential function of the area. Templin's equation does not consider 
variations in both gage length and area, so the term Elu does not appear. 
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MATERIALS AND PROCEDURE 

Since contributions to elongation can ideally be considered to come 
from the two sources, the uniform elongation and the extension associated 
with the neck, the effect of specimen geometry on these quantities was to 
be determined. This was accomplished by photogridding the specimens with a 
grid spacing of 20 to the inch along the reduced section and analyzing the 
distribution of strain throughout this region, with particular emphasis 
placed on the necked region. With this in mind, the materials used were 
selected because of their differences in uniform strain values. The 
materials used, each of which were individual heats, were hard-drawn copper, 
annealed copper, AlSI 1020 steel, and Hll tool steel. The copper and steel 
were obtained as 1/2-in.-thick by 2-1/2-in.-wide bars in random lengths and 
the Hll was supplied in 1/8 in. sheet. After insuring the homogeneity of 
the material by macroetching and hardness surveys, tensile specimens of 
various thicknesses and widths were prepared from the 1/2 in. bar by slicing 
to the approximate thickness and then carefully grinding to size. Specimen 
thicknesses from 0.010 to 0.500 in. were prepared, with widths ranging from 
1/8 to 2 in., see Figure 1. This resulted in specimen width-to-thicknes8 
ratios of from 1: 1 to 200: 1 and areas ranging from 0.0013 to 1. 00 sq. in. 

Tensile properties of the various materials used are summarized in 
Table 1. 

TABLE I 
0.2" 

Yield Tensile Reduction 
Strength Strength of Elongation Elongation Speci.en 

Material (pf.li) (psi) Area (") Total (") Unifonl") Type 

Copper. 34.800 37.000 69.2 30.0 7.0 0.357 iD. din. 
Hard-Drawn 

Copper. 8.900 31. 000 70.4 37.9 26.5 0.357 !D. din. 
Annealed 

1020 Steel 32.300 55.900 63.0 37.1 25.0 0.357 in. dia •• 

H11 Tool 
Steel 

231.000 250.900 8.8 4.0 1/2 in. x 1/8 !D. 

The copper was received in the hard-drawn condition. The annealed copper 
was obtained by annealing the as-received material for one hour at 1200 F. 
Testing of both coppers was carried out after machining and an anneal of 
two hours at 400 F. The AlSI 1020 hot-rolled steel was normalized at 1700 F 
prior to machining and annealing at 750 F for 2 hours. The Hll tool steel 
was machined to size, austenitized in a salt pot at 1800 F for 20 minutes 
(after preheating at 1450 F), quenched in still air, and tempered twice, 1 
hour each time, at 1050 F. 

Since the specimens were of various Sizes, a good range in load 
capacities was necessary and three different tensile testing machines were 
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utilized. The head speed of the machines was regulated so that all speci­
mens were strained at an initial rate of 0.01 inch per inch of ga~e length 
up to the yield and then at 0.02 inch per inch of gage length to fracture. 

All the specimens had been photogddded prior to testing with the grids 
spaced at 20 to the inch. Grids were put on the width surface for specimen 
thicknesses of 1/8 in. or less and on both the width and thickness surface 
for specimen thicknesses of 1/4 in. and 1/2 in., see Figure 2. As shown on 
this figure, two local strains, namely the width and longitudinal strains, 
can easily be measured on all specimens and the thickness strain can be 
measured on the larger specimens. On the thinner specimens the average 
thickness strains can be measured directly, with a micrometer. Furthermore, 
anyone strain can be calculated from the other two, since because of 
constancy of volume, the sum of the principal strains is zero. 

RESULTS 

The results plotted in Figure 3 show that over a range of sizes, there 
is a linear relationship between log of elongatioq in 2 in. and log of area. 
There is considerable Rcatter, however, especially at low specimen areas. 
A consideration of the absolute width and thickness dimensions, or the width­
to-thickness ratios, yielded no explanation for the scatter, except that the 
0.010 in. and in some cases the 0.020 in. thick specimens tended to show low 
values of elongation. For a 0.010 or 0.020 in. thick specimen, a variation 
in thickness of ±a.001 in. would have a great effect in localizing the 
strain from the very onset of plastic flow. Furthermore, there is the 
greater chance of damaging these specimens during machining. Many of the 
elongation values for these thin specimens are lower than the strain at maxi­
mum load as determined on standard size round specimens, which suggests that 
initial dimensional variations caused nonhomogeneous strain. 

Three equations mentioned earlier, Equations 1, 2, and 3, relate elon­
gation to some power of the area. It must be realized that for a specimen 
with an area approaching zero, the elongation approaches the uniform elon­
gation, and for very large specimens, the elongation in 2 in. approaches 
the zero gage length elongation. None of the equations approach these 
limits at zero and infinite gage length, which emphasizes their empirical 
nature. Bauschinger's and Bertella's equations do approach a finite value 
at zero area, however. In Figures 4a to d are plotted log (E1 - E1u) versus 
log area. The uniform elongations were determined from true stress-strain 
tests. It can be seen that a straight line can be drawn here also, although 
the scatter is actually greater than shown, since data points for specimens 
which showed an elongation less than the uniform elongation (as determined 
from a separate specimen) have negative values of E1 - Elu and hence are 
omitted. Since an independent determination of E1u must be made, it seems 
that no practical advantage is offered over Templin's equation. 
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GENERAL DISCUSSION 

There are three questions.concerning the observed relationship between 
e1o'ngation and area which are of interest. The first is concerned with the 
greater significance of area, rather than width-to-thickness ratio or re­
duced section 1ength-to-width ratio, in determining elongation; the second, 
with the slope of the straight line portions of the curves in Figure 3, 
which is the exponent "n" in Templin fS equation; and the third, with the 
possibility of predicting elongation values for different size specimens. 

Significance of Specimen Area 

Figure 5 shows a plot of the distribution of local elongation of a 
specimen, measured along the longitudinal axis of the bar over gage lengths 
of one grid spacing. It can readily be shown that the elongation over a 
2 in. gage length can be represented on such a plot by a horizontal line 
drawn such that the area under it is the same as the area under the curve 
of local elongation. Figure 5 snows a plot of strain distribution for 
three bars of the same cross-section geometry, but different areas. The 
shapes of the curves are generally the same, except that as the specimen 
area gets larger, the curve gets broader, which is an indication of the 
larger extent of the necked region. There is an effect of size on the 
maximum strain. This is caused partially by the difficulty in determining 
the true zero gage length elongation from measurements made on gage lengths 
of 0.05 in. minimum, and partially by a true effect of size on fracture 
strain (zero gage length elongation). Further, the local strain at the ex­
tremi ties of the gage length section is greater for the larger area bar, 
because of the closer proximity to the neck. All in all, however, the 
greater elongation in '2 in. {area under the curve} for the larger area bars 
can be attributed to the larger extent of necked region. Unfortunately, it 
it not possible to unambiguously separate the uniform strain region from the 
necked region. 

Figure 6 shows similar plots of local strain for three bars having the 
same area, but different cross-section geometries. Within experimental 
accuracy, these bars have the same elongation, and hence the same area under 
the curve. (The 1/2 in. by 1/2 in. specimen fractured close to one of the 
shoulders, which accounts for the low elongation values of 30.5 percent.) 
Notice now that the shapes of the curves are Quite different. At a width­
to-thickness ratio (wIt) of 1, the local strain decreases uniformly with 
distance from the fracture. As wIt increases, there is a tendency for a 
more rapid decrease Df strain with distance in a very narrow range in the 
vicinity of the fracture, with a change to a more gradual decrease at larger 
distances from the fracture. The height of the curve for high wIt ratios is 
such that at intermediate distances from the fracture it lies below the 
curve for a square specimen and at large distances from the fracture it lies 
above, with the net result being the same area under the curve. . 

Because of the constancy of volume, it is possible to break the longi­
tudinal strains into a component of transverse or width strain and thickness 
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strain. FUrther insight into the shape of the curves can possibly be found 
by considering the effect of width-to-thickness ratio separately on width 
and thickness strains. Sorre results are plotted in Figure 7, where true 
strains have been used, since here the sum of the width and thickness strains 
should equal the longitudinal strain. The width strains were determined over 
a one-grid length (0.05"), whereas the thickness strains were determined over 
the whole thickness. 

The results clearly show the differing behavior for the various. wit's. 
For a wit of 1, the width and thickness strains are almost equal. (The hard­
drawn copper is actually slightly anisotropic, by virtue of having a preferred 
orientation arising from cold working.) AB wit increases, there is a restraint 
in the width direction, and the ratio of the thickness strain to the width 
strain increases at the fracture, so that most of the elongation at this pOint 
arises from the contribution of the thickness strain. 

Significance of Exponent "n" in Templin's Equation 

Of some importance is the slope of the curves in Figure 3, which is 
characterized by the exponent "n" in Templin I s equation, Equation 3. The 
importance of this lies in the fact that it is a measure of the sensitivity 
of elongation values to thickness changes. It would tell, for example, 
whether two materials which have the same elongation value at a thickness 
of 1/8 in. would also have the same elongation at some other thickness. One 
is tempted to look upon the exponent "n" as a material property, which can 
be determined and tabulated. A little reflection on the problem will show 
the fallacy of such an approach. 

Since the length along the specimen occupied by the neck is propor­
tional to the specimen cross-section area, the elongation in two inches 
would be simply the maximum uniform strain for a bar of infinitely small 
area (assuming homogeneous deformation until maximum load). Similarly, for 
a bar of infinite cross-section area, the elongation in two inches approaches 
the zero gage length elongation, which can be calculated from the reduction 
of area or fracture strain. The zero and infinite gage length elongations 
therefore define the upper and lower limits respectively of a log-log plot 
of elongation in two inches versus specimen area. 

In order to show the importance of zero gage length elongation in 
controlling the elongation-area curve, this maximum strain was reduced, 
maintaining the uniform strain constant. This was done by pulling a series 
of AISI 1020 steel bars of different areas to a true strain at the neck of 
0.5. The elongation in two inches was measured, and is plotted in Figure 8 
together with the line for the bars pulled to fracture. It can be seen that 
the slope is reduced by reducing the maximum strain to 0.5. This can more 
strikingly be visualized by considering bars which fracture at strains less 
than the uniform strain, before necking has started. In such a case, the 
elongation is independent of gage length and specimen area, and the data 
would appear on a plot such as Figure 8 as a horizontal line with a slope of 
zero. 

-8-



Although the fracture and uniform strain define the 'upper and lower 
limits of elongation, the actual data would probably form a-1'curve. Over 
the range of areas of practical interest a straight line can probably 
approximate the data. To a first approximation the slope of this line, the 
constant "n" in Templin's equation, would be proportional to the difference 
between the logs of the zero and infinite gage length elongations (fracture 
and uniform strains), and hence to the log of the ratio of these elongations. 
This quantity for the various materials is tabulated in Table II, together 
with the slopes "n" from Figures 3 and 8. The zero and infinite gage length 
elongations were obtained from the reduction of area at fracture and the 
strain at maximum load for 0.357 in. round specimens (Table I), except for 
the Hll, where the zero gage length elongation was calculated from the sum 
of the width and thickness strains of a 1/2 in. x 1/8 in. specimen. 

TABLE II 

Zero GIye Infinite Glge Templin's 
Length E 011- Len9th Elon-

ElolElm log E10lElm 
Exfon8llt 

Material galion, E10 gaUon, Elm n" 

AISI 1020 Steel. 65 25.0 2.6 0.41 0.14 
strained to 0.5 

AISI 1020 Steel, 170 25.0 6.8 0.83 0.18 
fractured 

Copper. annealed 238 26.5 9.0 0.95 0.16 

Copper. hard -drawn 225 7.0 32.0 1.51 0.23 

Hll Tool Steel 63 4.0 15.7 1.20 0.30 

The results do show a rough correlation between the log of the ratio 
of these elongations and the slope. There are many assumptions made in this 
analysiswhich must be considered. First, it has been assumed that the 
slope of the actual ~ curve is proportional to the difference between the 
maximum and minimum values. Furthermore, it is assumed that the zero and 
infinite gage length elongations are independent of specimen dimensions. In 
addition, there are experimental difficulties in determining the zero and 
infinite gage length elongations. A small change in the infinite gage 
length elongation can caus~ an appreciable change in the log of the ratio. 

In spite of the crudeness of the analysis, it does point out some use­
ful trends. From tpese considerations, it can be seen that the exponent 
"n" in Templin's equation is not a general material property which can be 
tabulated, but rather depends on the ductility of the specific lot of 
material being tested. For two different materials with the same uniform 
strain, the one having the higher fracture strain would have the greater 
value of the exponent "n". Similarly, for a constant fracture strain, the 
lower the uniform strain the higher the value of this exponent. Unfortu­
nately, the high-strength sheet materials of current interest do have a low 
value of uniform strain with moderate fracture strains, so that their elon­
gation values are quite sensitive to variations .in thicknefi$ (area). 
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Prediction of Percent Elongation 

In many cases, it would be desirable to be able to predict the elonga­
tion for any arbitrary size specimen. Lacking complete data for many speci­
mens which would allow an interpolation to be made, there is a method which 
suggests itself. This is based on the concept that a constant elongation 
is obtained if v-A/L is maintained constant, as suggested by Bauschingerts 
equation, Equation 1. This concept is inherent in maintaining a gage length 
to diameter ratio of 4 for round tensile specimens, and in the practice used 
abroad of defining ~age length as a constant multiple of the square root of 
the area. Malmberg found this to be valid for round bars, but not for rec­
tangular bars. The results of this investigation support Malmberg. Never­
theless, under some conditions it is a good approximation for rectangular 
bars. If it is valid, then at a constant value of elongation: 

where L and A are the gage lengths and area of two different bars, I and 2. 
To determine the elongation in length L2 on a bar with an area A2 from 
measurements on a bar with area AI' simply measure the elongation on bar 1 

over a gage length Ll = L2JA1" From this relation, the elongation in a 

A2 
fixed gage length for any area bar can be calculated from measurements over 
different gage lengths on one bar. 

Some results using this method have been calculated for several size 
bars of the various materials, and are plotted in Figure 9 with the experi­
mentally determined results from Figure 3. In some cases, the points do 
not lie on the experimentally determined curve,' since the standard2~inch 
elongation for the bar used lies off the curve. In general the results are 
good, and the slopes of the experimental and calculated curves are the same. ' 
Devia\ions are noted when the elongation must be measured over such a long 
gage length that either a second necked region or end restraints are en­
countered. 

In a practical sense, this principle could be applied to standard 
1/2-in.-wide specimens. Suppose, for example, one had available and knew 
the properties of I/8-in. sheet. What elongation would be expected in 
sheet O.OBO-in. thick? From the above relation, one can determine that the 
elongation measured onL = 2J.125 = 2.5 in. of the 1/8-in. sheet is the 

.080 
same as the elongation in 2 in. in O.oeO-in. sheet. Accurate values should 
be obtained if the areas do not differ appreciably. 
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SUMMARY 

A study has been made of the effect of specimen width and thickness on 
the elongation in 2 in. as determined in a sheet tensile test. Hard-drawn 
copper, annealed copper, AlBI 1020 steel, and Hll tool steel were studied. 

The elongation in '2 in. is found to vary approximately linearly with 
the specimen area on a log-log plot, showing agreement with Templin's 
equation, El • C An. The reason for the greater dependence of elongation 
on specimen area, rather than width-to-thickness ratio, can be seen from a 
study of the looal width, thickness and longitudinal strains. 

The sensitivity of elongation to specimen area or thickness, as 
measured by the exponent "n" in Templin's equation, is dependent on the 
fracture strain as well as the uniform strain, and hence varies from heat 
to heat of material. This exponent has been related to log of the ratio of 
the zero gage length (fracture strain) to infinite gage length (uniform 
strain) elongations. 

If L/Jjlis maintained constant, the elongation will be approximately 
constant. Using this relation, it is possible to estimate the elongation 
for any size bar from measurements made on one bar. 

The me,thods outlined in this report will enable specification and 
inspection personnel to determine how elongation values will vary with 
sheet thickness. 
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